Cara Kerja Generator dan Transformator, Pengertian Rumus Fungsi Contoh Soal

Pengertian. Generator atau biasa disebut dinamo berfungsi untuk mengubah energi mekanik (yaitu gerak) menjadi energi listrik.

Generator merupakan peralatan teknologi yang bekerja berdasarkan induksi Faraday atau induksi elektromagnetik. Generator dibedakan menjadi dua, yaitu generator arus AC dan generator arus DC.

Dalam kehidupan sehari hari, generator yang umum diperjual belikan disebut genset atau genset listrik. Genset merupakan kependekan dari kata Generator set. Generator set  merupakan alat atau mesin atau perangkat yang terdiri dari pembangkit listrik (yaitu generator) dan mesin penggerak.

Generator dan mesin penggerak disusun menjadi satu kesatuan untuk menghasilkan tenaga listrik. Makannya sering disebut genset listrik atau dynamo listrik. Genset yang sering dipakai di rumah atau toko untuk pengganti ketika terjadi putus aliran listrik ukurannya relative kecil, makanya sering disebut genset mini.

Mesin penggerak merupakan mesin yang menggerakan atau memutar rotor pada generator yang umumnya berupa motor yang melakukan pembakaran internal, atau mesin diesel. Mesin penggerak bekerja dengan bahan bakar solar atau bensin.

Bagian Bagian Generator

Pada prinsipnya generator terdiri dari kumparan kawat dan magnet tetap atau permanen. Kutub magnet dipasang dihadapkan saling berlawanan. Diantara kedua kutub magnet akan dihasilkan medan magnet.

Generator terdiri dari dua bagian, yaitu rotor dan stator. Rotor adalah bagian generator yang bergerak yaitu kumparan yang berputar pada porosnya. Stator merupakan bagian generator yang diam yaitu magnet permanen yang kutubnya berhadapan saling berlawanan.

Di dalam generator terdapat cincin luncur, yaitu bagian yang berfungsi untuk mengalirkan arus listrik keluar dan bagian ini adalah tempat untuk mengikatkan ujung-ujung kawat kumparan.

Prinsip Kerja Generator Arus Bolak Balik AC

Prinsip yang digunakan adalah perubahan sudut berdasarkan hukum Faraday sehingga terjadi perubahan fluks magnetik. Perubahan sudut ini dirancang dengan cara memutar kumparan pada generator.

Gambar berikut menjelaskan secara sederhana bagian dan fungsi dari generator.

Gambar Prinsip Kerja Fungsi Bagian Generator Arus Bolak Balik AC,
Gambar Prinsip Kerja Fungsi Bagian Generator Arus Bolak Balik AC,

Putaran kumparan pada pada medan magnet akan menyebabkan terjadinya perubahan fluks magnetik yang menembus kumparan. Perubahan fluks magnetik akan menyebabkan timbulnya arus listrik. Arus demikian dikenal dengan arus induksi.

Sedangkan beda potensial antara ujung- ujung kumparan disebut sebagai gaya gerak listrik (GGL) induksi.

Sifat dari arus listrik yang dihasilkan oleh generator listrik AC ini  berjenis bolak-balik AC dengan bentuk seperti gelombang. Amplitudonya yang dihasilkan tergantung pada kuat medan magnet, jumlah lilitan kawat, dan luas penampang kumparan. Frekuensi gelombang genarator sama dengan frekuensi putaran kumparan

Untuk menyalurkan arus listrik yang dihasilkannya, pada kedua ujung kumparan dipasang cincin yang terpisah dan ditempelkan pada sikat karbon yang dihubungkan dengan kabel penyalur.

Contoh Genarator Arus Bolak Balik AC

Generator elektromagnetik merupakan sumber utama listrik dan dapat digerakkan oleh turbin uap, turbin air, mesin pembakaran dalam, kincir angin, atau bagian dari mesin lain yang bergerak. Pada pembangkit tenaga listrik, generator menghasilkan arus bolak-balik dan sering disebut alternator.

Rumus Gaya Gerak Listrik Hukum Faraday Generator

Besarnya GGL induksi sebanding dengan laju perubahan fluks magnetic yang menembus kumparan. Hal tersebut dirumuskan oleh Michael Faraday yang dikenal dengan hukum Faraday. Secara matematis, hukum Faraday dapat dinyatakan dengan persamaan sebagai berikut.

ε = εmak sin ωt

εmak = BAN sin ω

Dengan keterangan :

ε = ggl induksi (Volt)

B = induksi magnet (Wb/m-2)

A = luas bidang kumparan (m2)

N = jumlah lilitan kumparan

ω = laju anguler (rad/s)

εmax = ggl induksi maksimum (Volt)

t = lamanya kumparan berputar

Dari persamaan rumus generator dapat diketahui factor atau variabel yang mempengaruhi besar ggl yaitu faktor induksi magnet, luas bidang kumparan, jumlah lilitan kumparan, laju angular dan lama putaran.

Dengan menggunakan rumus generator tersebut dapat diturunkan beberapa rumus untuk menghitung satu variabel yang berpengaruh, jika variabel lainnya diketahui. Jadi rumus generator dapat digunakan untuk menhitung ggl induksi, rumus tersebut dapat juga digunakan untuk membuat rumus rumus sebagai berikut:

Rumus Menghutung Jumlah Lilitan Genertor, Rumus menghitung induksi magnet generator, Rumus menghitung laju anguler generator, Rumus menghitung lama kumparan generator berputar, Rumus menghitung GGL maksimum generator, Rumus Menghitung Daya Listrik Generator.

Contoh Soal Ujian Perhitungan GGL Generator Hukum Faraday

Sebuah genarator yang memiliki kumparan dengan luas penampang 200 cm2, terdiri atas 500 lilitan diputar dengan kecepatan sudut 1250 rad/s. Apabila kuat medan magnet pada generator tersebut 2.10-3 Wb/m2, tentukan berapa ggl maksimum yang dihasilkan generator tersebut!

Penyelesaian :

Diketahui :

A = 200 cm2 = 2 x10-2 m2

N = 500 lilitan

ω = 1250 rad/s

B = 2.10-3 Wb/m2

diitanyakan :

εmak = ….?

Jawab :

εmak = BAN ω

εmak = 2 x 10-3 x 2 x 10-2 x 500 x 1250 Volt

εmak = 25 volt

Jadi, besarnya gaya gerak listrik maksimum yang dihasilkan oleh generator adalah 25 volt.

Contoh Soal Menghitung Daya Litstrik Generator Genset

Misalkan pada sebuah generator atau genset nilai powernya tertera pada lebel adalah 1KVA dengan power factor (PF) 0.8. dan tegangan (voltage)  220 volt. Hitung berapa daya yang bisa digunakan dan berapa arus dari genset tersebut.

Diketahuti

Power=  Daya

1KVA = 1000 VA

Power factor = 0,8

V = 220 volt

Besar daya watt yang dapat digunakan adalah

P = 1000 x 0,8

P = 800 watt.

Artinya genset tersebut hanya dapat digunakan untuk peralatan dengan total dayanya adalah 800 Watt.

Besar Arus dihitung dengn rumus sebagai berikut:

I = P/V

I = 800/220

I = 3,6 Ampere

Jadi generator 1KVA dapat menhasilkan 800 watt dengan arus 3,6 Ampere.

Rumus Kebutuhan Bahan Bakar Generator Genset

Konsumsi Bahan Bakar solar untuk generator genset dapat dihitung dengan menggunakan rumus sebagai berikut:

BBM = k x P x t

Dengan keterangan

BBM = jumlah kebutuhan bahan bakar (liter)

k = 0,25 (tetapan kebutuhan bahan bakar diesel, (liter/kwh )

t = waktu generator geset bekerja (jam)

P = kapasitas daya generator genset (KVA)

Contoh Soal Perhitungan Kebutuhan Bahan Bakar Generator Genset

Daya sebuah generator  genset tertulis 1 kVA dengan power factor 0,8 dan dinyalakan selama 10 jam. Jika tetapan kebutuhan bahan bakar solar adalah 0,25 liter/kwh. Hitung berapa solar yang dibutuhkan?

Diketahui:

P = 1 kVa

P = 1 x 0,8

P = 0,8 kw

t = 10 jam

k = 0,25 liter/kwh

BBM = 0,25 x 0,8 x 10

BBM = 2 liter

Jadi kebutuhan solar selama 10 jam adalah dua liter.

Contoh Soal Pembahasan Perhitungan Gaya Gerak Listrik Generator

Kumparan berbentuk persegi panjang berukuran 20 cm x 10 cm memiliki 400 lilitan Kumparan ini bersumbu putar tegak lurus medan magnet sebesar 0,4 tesla.

Jika kumparan berputar dengan kecepatan sudut 40 rad/s maka tentukan ggl induksi maksimum kumparan tersebut.

Penyelesaian

N = 400

A = 20 x 10 cm2 = 2.10-2 m2

B = 0,4 Wb/m2

ω= 40 rad/s

Ggl induksi maksimum kumparan dihitung dengan rumus berikut :

εmak = B A N ω

εmak = 400 x 0,4x 5.10-2 x 40 = 128 volt

Generator Arus Searah (DC)

Pada dasarnya prinsip kerja generator arus searah sama dengan prinsip kerja generator arus bolak balik AC. Adapun perbedaannya adalah: pada generator arus searah dipasang komutator berupa sebuah cincin belah.

Fungsi komutataor adalah untuk mengatur agar setiap sikat karbon selalu mendapat polaritas gaya gerak listrik indiuksi yang konstan. Sehingga Sikat karbon yang satu bermuatan positif dan sikat yang lainnya negative.

Gambar Prinsip Kerja Fungsi Bagian Generator Arus Searah DC
Gambar Prinsip Kerja Fungsi Bagian Generator Arus Searah DC

Dengan adanya komutator maka arus listrik induksi yang dialirkan ke rangkaian listrik berupa arus listrik DC, meskipun kumparan yang berada di dalamnya menghasilkan arus listrik AC. Contoh generator arus searah DC adalah dynamo sepeda

Transformator Trafo

Transformator atau yang sehari hari umum disebut dengan trafo merupakan alat yang digunakan untuk menaikkan atau menurunkan tegangan AC. Transformator   memindahkan energi listrik dari suatu rangkaian arus listrik bolak-balik ke rangkaian lain diikuti dengan perubahan tegangan, arus, fase, atau impedansi.

Fungsi Transformator atau trafo adalah untuk mengubah besarnya tegangan arus bolak-balik.

Gambar Trafo Cara Kerja Bagian Fungsi Transformator,
Gambar Trafo Cara Kerja Bagian Fungsi Transformator,

Arus Pusar Transformator.

Cara Kerja Transformator Trafo

Trafo terdiri atas dua kumparan kawat yang membungkus inti besi baja, yaitu kumparan primer dan sekunder.

Transformator dirancang sedemikian rupa sehingga hampir seluruh fluks magnet yang dihasilkan arus pada kumparan primer dapat masuk ke kumparan sekunder.

Ketika Tegangan bolak-balik diberikan pada kumparan primer, maka akan terjadi perubahan medan magnetic. Perubuhan medan magnet akan menginduksi tegangan bolak-balik yang frekuensi sama dengan kumparan sekunder. Tegangan yang dihasilkan pada kumparan sekundur akan tergantung pada jumlah lilitan,

Jenis Transformator

Trafo terdiri dari dua jenis , yaitu transformator step-up dan transformator step-down.

Transformator step-up digunakan untuk memperbesar atau menaikkan tegangan arus bolak-balik. Pada transformator step-up jumlah lilitan sekunder (Ns) lebih banyak daripada jumlah lilitan primer (Np).

Transformator step-down digunakan untuk menurunkan tegangan listrik arus bolak-balik, dengan jumlah lilitan primer (Np) lebih banyak daripada jumlah lilitan sekunder (Ns).

Rumus Persamaan Transformator

Perbandingan antara tegangan primer dan tegangan sekunder pada transformator sama dengan perbandingan antara jumlah lilitan primer dan lilitan sekunder. Secara matematis dapat dinyatakan dengan menggunakan rumus persamaan berikut

VP/VS = NP/NS

Dengan Keterangan

VP = tegangan pada kumparan primer

VS = tegangan pada kumparan sekunder

NP = jumlah lilitan pada kumparan primer

NS = jumlah lilitan pada kumparan sekunder

Efisiensi Transformator

Idealnya transfer energi tersebut tidak kehilangan energi, tetapi kenyataannya ada sebagian energi yang hilang menjadi energi kalor, sehingga pada transformator dikenal efisiensi transformator yaitu perbandingan antara daya pada kumparan sekunder dengan daya pada kumparan primer.

Efisiensi Transformator dapat dinyatakan dengan menggunakan rumus persamaan berikut

η = PS/PP

η = (IS x VS)/ (IP x VP)

Dengan keterangan:

IP = arus listrik yang mengalir pada kumparan primer

IS = arus listrik yang mengalir pada kumparan sekunder

PP = daya listrik pada kumparan primer

PS = daya listrik pada kumparan sekunder

η = efisiensi transformator yang biasanya dinyatakan dalam %

Contoh Soal Ujian Perhitungan Efisiensi Transformator Trafo

Sebuah transformator memiliki efisiensi 80 % dan kumparan primer dihubungkan pada tegangan 220 volt, ternyata pada kumparan sekunder timbul tegangan sebesar 10 Volt. Apabila pada kumparan primer mengalir arus sebesar 1 A, tentukan berapa ampere arus yang mengalir pada kumparan sekundernya!

Penyelesaian :

Diketahui :

η = 80 %

Vp = 220 Volt

Vs = 22 Volt

Ip = 1 A

Ditanyakan :

Is = …?

Jawab:

η = (IS x VS)/ (IP x VP)

IS =  η (IP x VP)/VS)

IS = 80% (1 x 220)/22)

IS = 0,8 (10)

IS = 8 A

Jadi, besarnya arus yang mengalirkan pada kumparan sekunder adalah 8 Amper

Contoh Soal Perhitungan Tegangan Arus Transformator

Sebuah transformator dapat digunakan untuk menghubungkan radio transistor 22 volt AC, dari tegangan sumber 220 volt. Kumparan sekunder transistor terdiri atas 10 lilitan. Jika kuat arus yang diperlukan oleh radio transistor 1000 mA, hitunglah:

  1. jumlah lilitan primer,
  2. kuat arus primer,
  3. daya yang dihasilkan transformator!

Penyelesaian:

Diketahui:

Vp = 220 V

Ns = 10

Vs = 22 V

Is = 1000 mA = 1 A

Ditanya: a.

Np = … ?

Ip = … ?

P = … ?

Jawab:

VP/VS = NP/NS

NP = (NS VP)/VS

NP = (10 x 220)/22

NP = 100 lilitan

Jumlah lilitan primer adalah 100 lilitan

(IP x VP) = (IS x VS)

IP = (IS x VS)/VP)

IP = (1 x 22)/220)

IP = 0,1 A

Jadi Arus yang mengalir pada lilitan primer dalah 0,1 Amper atau 100 mili Ampere

PS = (IS x VS)

PS = (1 x 22)

PS = 22 W

Jadi daya pada lilitan sekunder adalah 22 watt

Daftar Pustaka:

  1. Sears, F.W – Zemarnsky, MW , 1963, “Fisika untuk Universitas”, Penerbit Bina Cipta, Bandung,
  1. Giancoli, Douglas C. 2000. Physics for Scientists & Engineers with Modern Physics, Third Edition. New Jersey, Prentice Hall.
  2. Halliday, David, Robert Resnick, Jearl Walker. 2001. Fundamentals of Physics, Sixth Edition. New York, John Wiley & Sons.
  3. Tipler, Paul, 1998, “Fisika untuk Sains dan Teknik”, Jilid 1,Pernerbit Erlangga, alih bahasa: Prasetyo dan Rahmad W. Adi, Jakarta.
  4. Tipler, Paul, 2001, “Fisika untuk Sains dan Teknik”, Jilid 2, Penerbit Erlangga, alih bahasa: Bambang Soegijono, Jakarta.
  5. Ganijanti Aby Sarojo, 2002, “Seri Fisika Dasar Mekanika”, Salemba Teknika,  Jakarta.
  6. Giancoli, Douglas, 2001, “Fisika Jilid 1, Penerbit Erlangga, Jakarta.