Dinamika Gerak Melingkar Beraturan

Pengertian Gerak Melingkar.  Gerak melingkar adalah sebuah gerak yang memiliki lintasan berupa lingkaran.

Gerak Melingkar Beraturan

Gerak melingkar beraturan (GMB) merupakan gerak suatu benda yang menempuh lintasan melingkar dengan besar kecepatan tetap. Kecepatan pada GMB besarnya selalu tetap, namun arahnya selalu berubah, dan arah kecepatan selalu menyinggung lingkaran.

Artinya, arah kecepatan (v) selalu tegak lurus terhadap garis r yang ditarik melalui pusat lingkaran ke titik tangkap vektor kecepatan pada saat itu.

Lintasan Benda Gerak Melingkar Beraturan
Lintasan Benda Gerak Melingkar Beraturan

Periode (T) Gerak Melingkar

Waktu yang dibutuhkan suatu benda begerak melingkar sebanyak satu putaran penuh disebut periode. Pada umumnya periode diberi notasi T. Satuan SI periode adalah sekon (s).

T = t/N

Dengan keterangan

T = periode, s

N = jumlah putaran

t = waktu putaran, s

Frekuensi (f) Gerak Melingkar

Banyaknya putaran yang ditempuh oleh suatu benda yang bergerak melingkar dalam selang waktu satu detik disebut frekuensi.

Satuan frekuensi dalam SI adalah putaran per sekon atau hertz (Hz). Hubungan antara periode dan frekuensi dapat dinyatakan dengan menggunakan persamaan rumus berikut.

f = N/t

Dengan keterangan

f = frekuensi, Hz

N = jumlah putaran

t = waktu putaran, s

Contoh Soal Perhitungan Periode Frekuensi Gerak Melingkar

sebuah roda sepeda diputar, dan katup ban pada roda tersebut berputar sebanyak 60 kali putaran selama 15 detik. Tentukan periode dan frekuensi gerak katup tersebut. Berapakah banyak putarannya setelah 20 detik.

Penyelesaian

Periode gerak katup sebesar :

Diketahui

N = 60

t = 15 detik

T = t/N

T = 15/60

T = ¼ detik

Frekuensi gerak katup adalah

f = N/t

f = 60/15

f = 4 Hz

atau dapat juga menggunakan persamaan frekuensi berikut:

f = 1/T

f = 1/(1/4)

f = 4 Hz

Banyaknya putaran setelah menempuk waktu selama t = 20 detik

N = t/N

N = 20/(1/4)

N = 80 putaran

Kecepatan Linear Gerak Melingkar

Kecepatan linear gerak melingkat adalah Kecepatan benda yang bergerak melingkar dengan arah kecepatan selalu menyinggung lintasan putarannya. Sehingga panjang lintasan benda melingkar sama dengan keliling lingkarannya.

Kecepatan linear gerak melingkar selalu tegak lurus terhadap garis jari jari r lingkarannya.

Kecepatan linear (v) merupakan hasil bagi panjang lintasan linear yang ditempuh benda dengan selang waktu tempuhnya.

Kecepatan linear benda bergerak melingkar dapat dinyatakan dengan menggunakan persamaan rumus berikut:

v = (2.π.r)/T

diketahui bahwa T =1/f sehingga dengan substitusi menjadi

v = 2.π.r.f

dengan keterangan:

v = kecepatan linear, (m/s)

r = radius jari jari lingkaran, m

f = frekuensi, (Hz)

Contoh Soal Perhitungan Kecepatan Linear Gerak Melingkar

Sebuah roda sepeda berputar sebanyak 10 kali putaran tiap satu detiknya dengan kecepatan linearnya adalah 18 m/s. Tentukanlah panjang diameter dari roda sepeda tersebut.

Jawab

Diketahui:

f = 10 Hz

v = 18 m/s.

Dengan menggunakan persamaan kecepatan linear gerak melingkar

v = 2.π.r.f

v = 2. .

r = v/(2.π.f)

r = 18/(2×3,14×10)

r = 0,287 m

Diketahui bahwa jari jari adalah setengah diameter lingkaran, atau diameter lingkaran sama dengan dua kali jari jari. Dengan demikian

r = ½ d

d = 2.r

d = 2 x 0,287 m

d = 0,57m = 5,7 cm

dengan demikian diameter roda sepeda tersebut adalah 5,7 cm

Pengertian Radian Gerak Melingkar

Satuan perpindahan sudut bidang datar dalam SI adalah radian (rad). Nilai radian adalah perbandingan antara jarak linear yang ditempuh benda dengan jari- jari lingkaran.

Satu radian atau rad didefinsikan sebagai sudut pusat lingkaran yang Panjang busurnya sama dengan Panjang jari jari lingkaran. Pada gambar dapat dilihat Satu rad adalah daerah yang dibatasi oleh garis jari jari hijau r, dan garis busur biru r.

Pengertian Radian Sudut Dinamika Gerak Melingkar
Pengertian Radian Sudut Dinamika Gerak Melingkar

Diketahui bahwa

Satu keliling = 3600 atau

Satu keliling = 2π rad sehingga

2π rad = 3600

1 rad = 3600/2π

1 rad = 57,320

Kecepatan Sudut Anguler Gerak Melingkar

Kecepatan sudut biasa disebut juga dengan kelajuan anguler. Kelajuan anguler ini dilambangkan dengan ω dan memiliki satuan rad/s.

Rumus Kecepatan Sudut Anguler Gerak Melingkar
Rumus Kecepatan Sudut Anguler Gerak Melingkar

Dalam gerak melingkar beraturan, kecepatan sudut atau kecepatan anguler untuk selang waktu yang sama selalu konstan. Kecepatan sudut didefinisikan sebagai besarnya sudut yang ditempuh tiap satu satuan waktu. Atau Besarnya perubahan sudut ( Δθ ) dalam selang waktu ( Δt ) tertentu disebut kecepatan anguler.

Untuk partikel yang melakukan gerak satu kali putaran, diperoleh sudut yang ditempuh adalah θ = 2π dan waktu tempuh adalah t = T.

Ini Berarti, kecepatan sudut (ω) pada gerak melingkar beraturan dapat dinyatakan dengan menggunakan persamaan rumus berikut:

ω = Δθ/Δt

Untuk satu putaran penuh, maka

Δθ/ = 2π

Δt= T

Sehingga dapat ditulis ulang menjadi

ω = 2π/T

Karena  T = 1/f maka

Besarnya kecepatan anguler gerak melingkar dapat dinyatakan dengan menggunkan persamaan rumus berikut.

ω = 2π.f

Dengan keterangan

ω = kecepatan sudut (rad/s)

T = periode (s)

f = frekuensi (Hz)

Percepatan sudut dapat pua dinyatakan dengn putaran per menit, biasa disebut cycle per menit atau CPM atau dalam bahasa Indonesia RPM rotasi per menit dapat dalam cps cycle per second atau rotasi per detik.

Contoh Soal Perhitungan Rumus Persamaan Kecepatan Sudut Anguler Gerak Melingkar

Sebuah benda yang berada di ujung sebuah piringan putar (compact disc) melakukan gerak melingkar dengan besar sudut yang ditempuh adalah 3/4 putaran dalam waktu 1 detik. Tentukanlah kelajuan sudut dari benda tersebut.

Jawab

Diketahui:

f = (¾)/1 detik = 0,75 Hz

Jawab

ω = 2π.f

ω = 2×3,14×0,75

ω = 4,7 rad/detik

Hubungan Kecepatan Linear dan Kecepatan Sudut Anguler Gerak Melingkar

Persamaan rumus kecepatan linear gerak melingkar adalah

v = 2.π.r.f atau

v /r = 2.π.f

Persamaan rumus kecepatan Anguler gerak melingkar adalah

ω = 2.π.f

Hubungan antara kecepatan linear dengan kecepatan sudut anguler adalah

ω = v/r atau

v = ω .r

dengan keterangan:

v = laju linear (m/s),

ω = laju anguler (rad/s),

r = jari- jari lintasan (lingkaran) (m).

Contoh Soal Perhitungan Rumus Kecepatan Linear dan Kecepatan Sudut Anguler

Sebuah partikel bergerak melingkar dengan kelajuan 8 m/s dan jari- jari lintasannya 1 m. Tentukanlah kelajuan angulernya.

Jawab

Diketahui:

v = 8 m/s, dan

r = 1 m.

Dengan menggunakan

 v = ω .r

ω = v/r

ω = (8 m/s)/(1 m)

ω = 8 rad/s

Percepatan Centripetal Gerak Melingkar

Pada gerak melingkar, arah gerak setiap saat berubah walaupun besar kecepatannya konstan atau tetap. Arah kecepatan yang setiap saat berubah ini mengakibatkan adanya percepatan yang selalu mengarah ke pusat lingkaran.

Percepatan ini sering disebut sebagai percepatan sentripetal. Percepatan sentripetal berfungsi untuk mengubah arah kecepatan. Percepatan sentripetal tidak berfungsi untuk mengubah kecepatan linear, tetapi untuk mengubah arah gerak partikel sehingga lintasannya berbentuk lingkaran.

Untuk benda yang melakukan gerak melingkar beraturan, benda yang mengalami percepatan, kelajuannya tetap tetapi arahnya yang berubah- ubah setiap saat. Jadi, perubahan percepatan pada GMB bukan mengakibatkan kelajuannya bertambah tetapi mengakibatkan arahnya berubah. Hal ini karena percepatan merupakan besaran vektor (memiliki nilai dan arah).

Percepatan centripetal dapat dinyatakan dengan menggunakan persamaan rumus berikut:

as = v2/r

as = ω2/r

as =4. π2. f2. r

dengan keterangan

as = percepatan sentripetal (m/s2)

v = kecepatan linear (m/s)

r = jari jari lingkaran

f = fekuensi (Hz)

Contoh Soal Perhitngan Persamaan Rumus Percepatan Sentripetal

Seseorang mengendarai sepeda motor melintasi sebuah tikungan berupa lingkaran yang berjari jari 20 m saat akan pergi ke sekolah. Jika kecepatan sepeda motor adalah 10 m/s, maka tentukan percepatan sepeda motor tersebut yang menuju ke pusat lintasan!

Diketahui :

r = 20 m

v = 10 m/s

Ditanyakan : as = …?

Jawab

as = v2/r

as = (10)2/20

as = 5 m/s

Gerak Melingkar Berubah Beraturan

Pada gerak melingkar berubah beraturan (GMBB), kecepatan linearnya berubah secara beraturan. Perubahannya dapat bertambah atau berkurang. Jika penambahan atau pengurangan kecepatannya adalah konstan, maka gerakannya dikatakan gerak melingkar berubah beraturan. Ini artinya Gerakan melingkarnya dilakukan dengan percepatan sudut yang konstan.

Jika perubahan percepatan searah dengan kecepatan, maka kecepatannya akan meningkat. Namun jika perubahan percepatannya berlawanan arah dengan kecepatan, maka kecepatannya menurun.

Percepatan Sudut Anguler Gerak Melingkar Berubah Beraturab

Perubahan kecepatan sudut tiap satu satuan waktu dinamakan percepatan sudut. percepatan sudut anguler dapat dinyatakan dengan menggunakan persamaan rumus berikut.

α= Δω /Δt

dengan keterangan

α= percepatan sudut (rad/s2)

Δω = perubahan kecepatan sudut (rad/s)

Δt = selang waktu (s)

Contoh Soal Perhitungan Rumus Percepatan Sudut Anguler

Sebuah Partikel yang berputar melalui lintasan melingkar berubah kecepatan sudutnya dari 120 rpm menjadi 180 rpm dalam waktu 40 detik. Berapakah percepatan sudut gerak partikel itu?

Penyelesaian

Diketahui

Δt = 40 detik

ω1 = 120 rpm = 120x(2π/60)

ω1 = 4πrad/s

ω2 =180 rpm = 180x((2π/60)

ω2 =6πrad/s

jawab

Δω = ω2 – ω1

Δω = 6π rad/s – 4π rad/s

Δω =  2π rad/s

Percepatan sudut anguler nya adalah

α = Δω/Δt

α= (2π rad/s)/40s

α= 0,05 π rad/s2

Percepatan Tangensial Gerak Melingar Berubah Beraturan

Pada gerak melingkar berubah beraturan (GMBB), kecepatan linear dapat berubah secara beraturan. Hal ini menunjukkan adanya besaran yang berfungsi untuk mengubah kecepatan. Besaran tersebut adalah percepatan tangensial (at), yang arahnya dapat sama atau berlawanan dengan arah kecepatan linear.

Rumus Percepatan Tangensial Gerak Melingar Berubah Beraturan
Rumus Percepatan Tangensial Gerak Melingar Berubah Beraturan

Percepatan tangensial didapat dari percepatan sudut α dikalikan dengan jari- jari lingkaran r.

at= α · r

Dengan Keterangan

at= percepatan tangensial (m/s2)

α =  percepatan sudut (rad/s2)

r = jari-jari lingkaran dalam cm atau m

Pada Gerak Melingkar Berubah Beraturan, benda mengalami dua jenis percepatan, yaitu percepatan sentripetal (as) dan percepatan tangensial (at). Percepatan sentripetal selalu menuju ke pusat lingkaran, sedangkan percepatan tangensial selalu menyinggung lingkaran.

Percepatan total dalam Gerak Melingkar Berubah Beraturan adalah jumlah vektor dari kedua percepatan tersebut.

Perepatan total gerak melingkar berubah beraturan dapat dinyatakan dengan menggunakan persamaan rumus beriktu

a = (at2 + as2)0,5

at= percepatan tangensial (m/s2)

as= percepatan sentripetal (m/s2)

Sedangkan arah percepatan total terhadap arah radial, yaitu θ dapat dihitung dengan perbandingan tangen seperti persamaan rumus berikut

tan θ = at/as

Daftar Pustaka:

  1. Ganijanti Aby Sarojo, 2002, “Seri Fisika Dasar Mekanika”, Salemba Teknika,  Jakarta.
  2. Giancoli, Douglas, 2001, “Fisika Jilid 1, Penerbit Erlangga, Jakarta.
  3. Sears, F.W – Zemarnsky, MW , 1963, “Fisika untuk Universitas”, Penerbit Bina Cipta, Bandung,
  4. Giancoli, Douglas C. 2000. Physics for Scientists & Engineers with Modern Physics, Third Edition. New Jersey, Prentice Hall.
  5. Halliday, David, Robert Resnick, Jearl Walker. 2001. Fundamentals of Physics, Sixth Edition. New York, John Wiley & Sons.
  6. Tipler, Paul, 1998, “Fisika untuk Sains dan Teknik”, Jilid 1,Pernerbit Erlangga, alih bahasa: Prasetyo dan Rahmad W. Adi, Jakarta.
  7. Tipler, Paul, 2001, “Fisika untuk Sains dan Teknik”, Jilid 2, Penerbit Erlangga, alih bahasa: Bambang Soegijono, Jakarta.
  8. Ardra.Biz, 2019, “Dinamika Gerak Melingkar Berubah dan Beraturan, Pengertian Gerak melingkar, Pengertian Gerak Melingkar Beraturan, Rumus Gerak melingkar beraturan(GMB), arah kecepatan (v) gerak melingkar, rumus kecepatan gerak melingkar,
  9. Ardra.Biz, 2019, “satuan lambang kecepatan gerak melingkar, Periode (T) Gerak Melingkar, Rumus periode gerak melingkar, Rumus Frekuensi (f) Gerak Melingkar, Satuan lambang frekuensi gerak melingkar,
  10. Ardra.Biz, 2019, “Hubungan periode dan frekuensi, Contoh Soal Perhitungan Periode Frekuensi Gerak Melingkar, Rumus Kecepatan Linear Gerak Melingkar, Satuan lambang Kecepatan linear benda bergerak melingkar, Contoh Soal Perhitungan Kecepatan Linear Gerak Melingkar,
  11. Ardra.Biz, 2019, “Pengertian Radian Gerak Melingkar, Satuan perpindahan sudut, Pengertian Satu radian atau rad, gambar satuan radian, Kecepatan Sudut Anguler Gerak Melingkar, satuan lambang kecepatan sudut, rumus kecepatan sudut,
  12. Ardra.biz, 2019, “hubungan kecepatan linear dan kecepatan sudut, Contoh Soal Perhitungan Rumus Persamaan Kecepatan Sudut Anguler Gerak Melingkar, Contoh Soal Perhitungan Rumus Kecepatan Linear dan Kecepatan Sudut Anguler,
  13. Ardra.Biz, 2019, “Percepatan Centripetal Gerak Melingkar, Rumus Percepatan Centripetal Gerak Melingkar, Satuan lambang Percepatan Centripetal, Contoh Soal Perhitngan Persamaan Rumus Percepatan Sentripetal, Gerak Melingkar Berubah Beraturan, rumus gerak melingkar berubah beraturan (GMBB),
  14. Ardra.Biz, 2019, “Arah Percepatan Sudut Anguler Gerak Melingkar Berubah Beraturan, Contoh Soal Perhitungan Rumus Percepatan Sudut Anguler, Percepatan Tangensial Gerak Melingar Berubah Beraturan, Rumus Percepatan Tangensial, Rumus percepatan tangensial,
  15. Ardra.Biz, 2019, “Satuan lambang percepatan tangensial, arah percepatan tangensial, Rumus Percepatan total Gerak Melingkar Berubah Beraturan, arah Percepatan total,