Pengertian Kecepatan Reaksi. Laju reaksi merupakan laju berkurangnya jumlah reaktan atau laju bertambahnya jumlah produk dalam satuan waktu. Laju reaksi ditentukan melalui percobaan dengan cara mengukur banyaknya pereaksi yang dihabiskan atau dengan mengukur banyaknya produk yang dihasilkan pada selang waktu tertentu.
Pada system homogen, laju reaksi umumnya dinyatakan sebagai laju pengurangan konsentrasi molar pereaksi atau laju pertambahan konsentrasi molar produk dalam waktu tertentu.
Grafik Laju Reaksi Konsentrasi Waktu
Jumlah suatu zat yang dihabiskan dalam reaksi maupun yang dihasilkan dalam reaksi dapat dinyatakan dengan berbagai macam satuan, misalnya gram, mol, atau konsentrasi, sedangkan satuan waktu dapat berupa detik, menit, jam, hari ataupun tahun.
Apabila reaksi seperti berikut
R → P, maka laju reaksinya adalah
vR = – ∆[R]/∆t = laju pengurangan konsentrasi molar reaktan dalam waktu tertentu
vP = +∆[P]/∆t = laju pertambahan konsentrasi molar produk dalam waktu tertentu
1). Contoh Soal Perhitungan Laju Reaksi
Pada reaksi zat A menjadi zat B diketahui bahwa konsentrasi zat A mula-mula 8 M, setelah 3 detik menjadi 2 M. Tentukan laju reaksinya?
Jawab:
∆c = Perubahan konsentrasi
∆c = (8 – 2) M = 6 M
∆t = Perubahan waktu
∆t = 3 detik
Dengan demikian, laju reaksi dari zat A menjadi Zat B adalah:
v=∆c/∆t
v= 6/3
v = 2 M/detik
Contoh Soal dan Pembahasan Di Akhir Artikel
Untuk system reaksi yang lebih kompleks, maka laju reaksi akan sama dengan berkurangnya konsentrasi masing – masing reaktan atau bertambahnya konsentrasi setiap produknya.
Apabila reaksi seperti berikut:
aA + bB → cC + dD
Maka Laju reaksinya adalah:
vA = – ∆[A]/∆t
vB = – ∆[B]/∆t
vD = + ∆[C]/∆t
vD = + ∆[D]/∆t.
Perbandingan laju reaksi zat – zat dalam reaksi sama dengan perhitungan koefiensi reaksinya
vA : vB : vc : vD = a : b : c : d
Persamaan Laju Reaksi Kimia Hukum Laju Reaksi
Persamaan laju reaksi kimia menyatakan hubungan antara konsentrasi reaktan dengan laju reaksi. Secara umum, persamaan laju reaksi dituliskan sebagai berikut:
aA + bB → cC + dD
Rumus Persamaan Laju Reaksi
Persamaan laju reaksi kimianya adalah:
v = k [A]m [B]n
Dengan
v = laju reaksi
[A] = konsentrasi zat A
[B] = konsentrasi zat B
m = order reaksi zat A
n = order reaksi zat B
k = konstanta laju reaksi
Persamaan laju reaksi di atas disebut persamaan laju reaksi atau hukum laju reaksi. Persamaan laju reaksi seperti itu menyatakan hubungan antara konsentrasi pereaksi dengan laju reaksi. Bilangan pangkat pada persamaan di atas disebut sebagai orde reaksi atau tingkat reaksi pada reaksi yang bersangkutan.
Nilai Orde reaksi hanya dapat ditentukan dari percobaan atau eksperimen. Orde reaksi pada reaksi secara keseluruhan disebut seaagai orde reaksi total. Besarnya orde reaksi total adalah jumlah semua orde reaksi pereaksi. Sehingga, orde reaksi total (orde reaksi) pada reaksi tersebut di atas adalah m + n.
Contoh Penentuan Orde Reaksi
Perhatikan Contoh reaksi berikut
2H2(g) + 2NO(g) → H2O(g) + N2(g)
Persamaan laju reaksinya dapat ditulis sebagai berikut:
v = k . [H2] [NO2]2,
Reaksi tersebut mempunyai tingkat (atau orde) pertama terhadap H2 dan tingkat (atau orde) kedua terhadap NO. Sehingga secara keseluruhan reaksi tersebut merupakan tingkat (atau orde) ketiga.
Contoh Soal dan Pembahasan Di Akhir Artikel
Tetapan kesetaraan (k) bergantung pada macam pereaksi dan suhu reaksi. Untuk reaksi yang sama, harga k tetap selama suhu reaksi tidak berubah. Jika suhu atau pereaksi berubah, harga k juga berubah.
Pengertian Orde Reaksi Kimia
Pada dasarnya Orde reaksi merupakan suatu bilangan pangkat dan faktor konsentrasi dalam persamaan laju reaksi seperti berikut
v = k [A]m [B]n
Konsentrasi [A] berpangkat m atau m merupakan orde reaksi terhadap konsentrasi [A]
konsentrasi [B] berpangkat n atau n merupakan orde reaksi terhadap konsentrasi [B].
Penentuan Orde Laju Reaksi
Orde reaksi ditentukan dari hasil eksperimen. Orde reaksi tidak dapat ditentukan dari bentuk persamaan reaksinya.
Penentuan orde reaksi memerlukan beberapa eksperimen dengan cara merubah – ubah variabel tekanan khusus untuk reaksi berwujud gas atau merubah molaritas untuk reaksi berupa larutan atau dapat pula gas.
Orde reaksi pada reaksi keseluruhan disebut orde reaksi total. Besarnya orde reaksi total adalah jumlah semua orde reaksi pereaksi. Jadi, orde reaksi total (orde reaksi) pada reaksi tersebut adalah m + n.
Reaksi Kimia Orde Nol
Laju reaksi tetap walaupun ada penambahan konsentrasi reaktan.
Contoh Reaksi Kimia Orde Nol
Contoh reaksi kimia orde nol adalah reaksi pada proes fotosintetis, reaksi penguraian ammonia
Reaksi Kimia Orde Satu
Kenaikan laju reaksi akan sebanding dengan penambahan konsentrasi reaktan
Contoh Reaksi Kimia Orde Satu
Contoh reaksi kimia orde satu adalah reaksi penguraian gas N2O4
Reaksi Kimia Orde Dua
Kenaikan laju reaksi sebanding dengan kuadrat penambahan konsentrasi reaktan
Contoh Reaksi Kimia Orde Dua adalah reaksi pembetukan gas Nitrogen dioksida NO2 dari reaksi nitogen monoksida dengan oksigen.
2). Contoh Soal Perhitungan Laju Reaksi Kimia CH4 Dan Br2
Reaki kimia CH4 Dan Br2 memenuhi persamaan reaksi berikut:
CH4 (g) + Br2 (g) → CH3Br (g) + HBr (g)
Pada keadaan tertentu laju pengurangan terhadap gas CH4 adalah 2 M/s, maka tentukanlah laju penambahan gas CH3Br
Diketahui:
v(CH4) = 2 M/s
Rumus Menghtiung Laju Penambahan Produk Hasil Reaksi
Untuk reaksi yang setara, Laju penambahan gas CH3Br dapat dihitung dengan menggunakan rumus seperti berikut:
Perbandingn laju = perbandingan koefisien
v(CH4) : v(CH3Br) = coef (CH4) : coef (CH3Br)
2 : v(CH3Br) = 1: 1 atau dapat pula ditulis
2/v(CH3Br) = 1/1
v(CH3Br) = 2 M/s
Jadi, Laju penambahan gas CH3Br adalah 2 M/s
3). Contoh Soal Perhitungan Kecepatan Reaksi Penguraian Batu Kapur Kalsium Karbonat CaCO3
Persamaan reaksi penguraian kalsium karbonat memenuhi persamaan reaksi berikut
CaCO3 → CaO + CO2
Bila 30 gram CaCO3 (Mr 100) pada temperature dan tekanan tertentu terurai secara sempurna seluruhnya menjadi CaO dan gas CO2 dalam waktu 5 menit, maka hitunglah kecepatan pengurainya.
Diketahui
m(CaCO3) = 30 gram atau
mol(CaCO3) = 30/100
mol(CaCO3) = 0,3 mol
t = 5 x 60 = 300 detik
Rumus Menentukan Kecepatan Reaksi Penguraian
Kecepatan reaksi penguraian kalsium karbonat dapat dinyatakan dengan rumus seperti berikut
v(CaCO3) = Δmol/Δt
v(CaCO3) = 0,3/300
v(CaCO3) = 1,0 x 10-3 mol/detik
Jadi, kecepatan reaksi penguraian batu kapur kalsium karbonat adalah 1,0 x 10-3 mol/detik
4). Contoh Soal Perhitungan Kecepatan Pembentukan Nitrogen Dioksida NO2
Reaksi pembentukan nitrogen dioksida NO2 dari Dinitrogen pentoksida N2O5 memenuhi persamaan reaksi berikut;
N2O5 → 2 NO2 + ½ O2
Tentukan laju pembentukan NO2 jika laju penguraian senyawa N2O5 adalah 2 x 10-6 mol/L.detik
Diketahui.
v(N2O5) = 2 x 10-6 mol/L.detik
Rumus Menghitung Laju Pembentukan Nitrogen Dioksida NO2
Kecepatan reaksi pembentukan Nitrogen Dioksida NO2 dapat dinyatakan dengan menggunakan rumus berikut:
v(N2O5)/v(NO2) = koef (N2O5)/koef (NO2) atau
(2 x 10-6)/v(NO2) = 1/(2)
(2 x 10-6)/v(NO2) = 1/2
v(NO2) = 2 x (2 x 10-6)
v(NO2) = 4 x 10-6 mol/L.detik
Jadi, kecepatan reaksi pembentukan Nitrogen Dioksida NO2 adalah v(NO2) = 4 x 10-6 mol/L.detik
5). Contoh Soal Perhitungan Kecepatan Reaksi Pembakaran Gas Amonia NH3
Reaksi pembakaran gas ammonia NH3 sesuai dengan reaksi seperti berikut
4 NH3 + 5 O2 → 4 NO + 6 H2O
Jika laju reaksi ammonia NH3 adalah 0,4 mol/Ldetik, berapakah kebutuhan gas oksigen setiap detiknya pada pembakaran ammonia tersebut
diketahui:
v(NH3) = Kecepatan reaksi NH3
v(NH3) = 0,4 mol/L.detik
Rumus Menentukan Kebutuhan Gas Oksigen Pada Pembakaran Amonia NH3
Kebutuhan gas oksigen per detik dalam pembakaran ammonia sama dengan laju reaksi gas oksigen yang dapat dihitung dengan persamaan berikut
v(O2)/v(NH3) = koef (O2)/koef (NH3) atau
v(O2) = v(NH3) x koef (O2)/koef (NH3)
v(O2) = 0,4 x (5/4)
v(O2) = 0,5 mol/L.detik
Jadi kebutuhan gas oksigen adalah 0,5 mol/L.detik
6). Contoh Soal Perhitungan Kecepatan Reaksi Dekomposisi Nitrogen Dioksida NO2
Reaksi dekomposisi Nitrogen Dioksida NO2 merupakan reaksi elementer dan dinyatakan dengan persamaan reaksi berikut
2 NO2 → 2 NO + O2
Pada awal reaksi [NO2] adalah 0,01 M dan laju reaksinya adalah 5 x 10-4 M/detik, tentukan laju reaksi ketika [NO2] sudah terurai 90% nya.
Diketahui
[NO2] = 0,01 M
v1(NO2) = 5 x 10-4 M/detik,
Rumus Menghitung Kecepatan Reaksi Dekomposisi Nitrogen Dioksida NO2
Kecepatan reaksi Dekomposisi Nitrogen Dioksida NO2 dapat dinyatakan dengan rumus berikut;
konsentrasi awal NO2
[NO2]1 = 0,01 M sehingga v1 adalah
v1 = k [0,01]2 = 5 x 10-4 M/detik
konsentrasi NO2 yang tersisa setelah 90% terurai adalah
[NO2]2 = 0,01 – (90% x 0,01)
[NO2]2 = 0,001 M sehingga v2 adalah
v2 = k [0,001]2
Dengan demikian, kecepatan setelah 90% NO2 terurai adalah
v1/v2 = (k [0,01]2)/(k [0,001]2) atau
v2 = v1 x (0,001/0,01)2
v2 = 5 x 10-4 (0,01)
v2 = 5 x 10-6 M/detik
Jadi Kecepatan reaksi Dekomposisi Nitrogen Dioksida NO2 adalah 5 x 10-6 M/detik
7). Contoh Soal Perhitungan Kecepatan Penguraian Dinitrogen Pentoksida N2O5
Reaksi penguraian Dinitrogen Pentoksida N2O5 menjadi Nitrogen dioksida NO2 dan gas oksigen memenuhi persamaan reaksi berikut;
N2O5 → 2 NO2 + ½ O2
Pada reaksi diketahui bahwa N2O5 berkurang dari 4 mol/liter menjadi 1 mol/liter dalam waktu 20 detik. Hitung Berapakah laju reaksi berkurang konsentarsi N2O5
Rumus Menghitung Laju Penguraian Dinitrogen Pentoksida N2O5
Laju pengurangan konsentrasi Dinitrogen Pentoksida N2O5 dapat dirumuskan dengan menggunakan persamaan berikut:
v(N2O5) =∆c/∆t atau
v(N2O5) =∆[N2O5]/∆t
v(N2O5) = (4 – 1)/20
v(N2O5) = 0,15 M/detik
Jadi laju pengurangan konsentrasi N2O5 adalah 0,15 M/detik
8). Contoh Soal Penentuan Persamaan Laju Reaksi Kimia Brom dan Nitrogen Monoksida
Percobaan penentuan laju reaksi, gas brom dapat bereaksi dengan gas nitrogen monoksida menurut persamaan reaksi:
NO + Br2 → NOBr2
Dari percobaan reaksi tersebut diperoleh data seperti ditunjukkan pada table
Tentukan persamaan laju reaksi tersebut
Rumus Menentukan Persamaan Laju Reaksi Kimia
Persamaan laju reaksi kimia secara umum dapat dinyatakan denga persamaan berikut
v = k [NO]m [Br2]n
Menentukan Orde Reaksi Kimia Brom dan Nitrogen Monoksida
Untuk mencari orde m, dapat gunakan nilai konsentrasi awal [NO] yang berbeda, namun konsentrasi [Br2] sama, yaitu pada percobaan 2 dan 3, dan dapat dinyatakan dengan rumus berikut
v2= k [0,1]m [0,2]n
v3 = k [0,2]m [0,2]n
Orde m dapat dicari cara seperti ini
v3/v2 = (k [0,2]m [0,2]n)/(k [0,1]m [0,2]n)
8/4 = [0,2]m/[0,1]m
2 = [2]m
m = 1
Jadi orde reaksi terhadap konsentrasi [NO] adalah 1
Untuk mencari orde n, dapat gunakan nilai konsentrasi awal [NO] yang sama, namun konsentrasi [Br2] yang berbeda, yaitu pada percobaan 1 dan 2, dan dapat dinyatakan dengan rumus berikut
v1= k [0,1]m [0,1]n
v2 =k [0,1]m [0,2]n
Orde n dapat dicari cara seperti ini
v2/v1 = (k [0,1]m [0,2]n)/(k [0,1]m [0,1]n)
4/2 = [0,2]n/[0,1]n
2 = [2]n
n = 1
Jadi orde reaksi terhadap konsentrasi [Br2] adalah 1
Dengan demikian persamaan laju reaksinya adalah
v = k [NO]1 [Br2]1 atau
v = k [NO] [Br2]
9). Contoh Soal Perhitungan Konstanta Persamaan Laju Reaksi Kimia Hidrogen Nitrogen Monoksida
Dari percobaan untuk penentuan laju reaksi, gas hidrogen dapat bereaksi dengan gas nitrogen monoksida menurut persamaan reaksi:
2 H2 + 2 NO → 2 H2O + N2
Dari percobaan reaksi tersebut diperoleh data seperti ditunjukkan pada table berikut
Tentukanlah orde reaksi, persamaan laju reaksi dan konstanta laju reaksi
Rumus Menentukan Persamaan Laju Reaksi Kimia
Persamaan laju reaksi kimia secara umum dapat dinyatakan denga persamaan berikut
v = k [H2]m [NO]n
Menentukan Orde Reaksi Kimia Hidrogen dan Nitrogen Monoksida
Untuk mencari orde m, dapat gunakan nilai konsentrasi awal [H2] yang berbeda, namun konsentrasi [NO] sama, yaitu pada percobaan 1 dan 2, dan dapat dinyatakan dengan rumus berikut
v1= k [0,01]m [0,02]n
v2 = k [0,02]m [0,02]n
Orde m dapat dicari dengan cara seperti ini
v2/v1 = (k [0,02]m [0,02]n)/(k [0,01]m [0,02]n)
8/4 = [0,02]m/[0,01]m
2 = [2]m
m = 1
Jadi orde reaksi terhadap konsentrasi [H2] adalah 1
Untuk mencari orde n, dapat gunakan nilai konsentrasi awal [H2] yang sama, namun konsentrasi [NO] yang berbeda, yaitu pada percobaan 2 dan 3, dan dapat dinyatakan dengan rumus berikut
v2= k [0,02]m [0,02]n
v3 =k [0,02]m [0,04]n
Orde n dapat dicari cara seperti ini
v3/v2 = (k [0,02]m [0,04]n)/(k [0,02]m [0,02]n)
32/8 = [0,04]n/[0,02]n
4 = [2]n
n = 2
Jadi orde reaksi terhadap konsentrasi [NO] adalah 2
Dengan demikian persamaan laju reaksinya adalah
v = k [H2] [NO]2
Rumus Cara Menentukan Konstanta Laju Persamaan Reaksi Hidrogen dan Nitrogen Monoksida
Konstanta laju persamaan reaksi dapat dihitung dengan rumus seperti berikut
v = k [H2] [NO]2
k = v/([H2] [NO]2)
nilai nilai v, [H2] dan [NO] dapat menggunakan salah satu data percobaan, misal data dari percobaan nomor 2,
v = 8 M/detik
[H2] = 0,02 M
[NO] = 0,02 M
Sehingga nilai k dapat dicari seperti berikut
k = 8/(0,02 x (0,02)2)
k = 1 x 106 M/detik
Jadi, konstanta persamaan laju reaksinya adalah 1 x 106 M/detik
10). Contoh Soal Perhitungan Laju Reaksi Volume Diperkecil
Laju reaksi suatu gas memenuhi Hukum laju reaksi berikut
v = k [A]2[B]
Bila volume diperkecil menjadi ¼ kali volume mula mula, tentukan laju reaksi jika dibandngkan dengan laju reaksi mula mula
Diketahui
Vol2 = ¼ Vol1
Rumus Menentukan Laju Reaksi Volume Diperkecil
Laju reakis Ketika volume diperkecil menjadi ¼ volume semula dapat dihitung dengan menggunakan rumus berikut:
v1 = k [A]2[B]
v2 = k [A/(¼)]2[B/(1¼)]
v2/v1 = (k [A/(¼)]2[B/(¼)])/(k [A]2[B])
v2/v1 = ([4A]2[4B])/([A]2[B])
v2/v1 = ([4]2[4])/([1]2[1])
v2/v1 = (16 x4)
v2/v1 = 64
v2 = 64 v1
Dengan demikian, laju reaksi menjadi 64 kali laju reaksi mula mula
11). Contoh Soal Menentuka Persamaan Laju Reaksi Dari Data Percobaan
Reaksi fase gas memenuhi persamaan reaksi berikut:
2 NO + Br2 → 2NOB2
dilakukan dalam kondisi tertutup dengan konsentrasi awal reaktan yang berbeda beda. Pada table waktu reaksi adalah waktu dari awal reaksi sampai hilangnya warna Br2.
Tentukanlah orde reaksi dan laju reaksi fase gas tersebut
Rumus Menentukan Persamaan Laju Reaksi Kimia
Persamaan laju reaksi kimia secara umum dapat dinyatakan denga persamaan berikut
v = k [NO]m [Br2]n
Menentukan Orde Reaksi Kimia Dari Data Percobaan
Untuk mencari orde m, dapat gunakan nilai konsentrasi awal [NO] yang berbeda, namun konsentrasi [Br2] sama, yaitu pada percobaan 1 dan 3, dan dapat dinyatakan dengan rumus berikut
v1= k [0,1]m [0,05]n
v3 = k [0,2]m [0,05]n
Perlu diingat bahwa laju reaksi berbanding terbalik dengan waktunya. Sehingga
v3/v1 = t1/t3
Orde m dapat dicari dengan cara seperti ini
t1/t3 = (k [0,2]m [0,05]n)/(k [0,1]m [0,05]n)
4/1 = [0,2]m/[0,1]m
4 = [2]m
m = 2
Jadi orde reaksi terhadap konsentrasi [NO] adalah 2
Untuk mencari orde n, dapat gunakan nilai konsentrasi awal [NO] yang sama, namun konsentrasi [Br2] yang berbeda, yaitu pada percobaan 1 dan 2, dan dapat dinyatakan dengan rumus berikut
v1= k [0,1]m [0,05]n
v2 =k [0,1]m [0,1]n
Perlu diingat bahwa laju reaksi berbanding terbalik dengan waktunya. Sehingga
v2/v1 = t1/t2
Orde n dapat dicari cara seperti ini
t1/t2 = (k [0,1]m [0,1]n)/(k [0,1]m [0,05]n)
4/2 = [0,1]n/[0,05]n
2 = [2]n
n = 1
Jadi orde reaksi terhadap konsentrasi [Br2] adalah 1
Dengan demikian persamaan laju reaksinya adalah
v = k [NO]2 [Br2]
- Tetapan Hasil Kali Kelarutan Ksp: Pengertian pH Pengendapan Pengaruh Ion Sesama Contoh Soal Perhitungan 12
- Elektrolisis Elektrokimia: Sel Volta Galvani Reaksi Katoda Anoda Contoh Soal Rumus Perhitungan 14
- Sifat Halogen: Pengertian Sifat Fisis Kimia Reaksi Pembentukan Kegunaan Senyawa Halogen Flour Klor Brom Iodium
- Menentukan pH Asam Basa: Pengertian Derajat Reaksi Ionisasi Asam Kuat Basa Lemah Contoh Soal Perhitungan 11
- Ikatan Kovalen: Pengertian Tunggal Rangkap Dua Dan Tiga Contoh Soal.
- Ikatan Kovalen Koordinasi: Pengertian Ciri Contoh Soal Ikatan Kimia.
- Konfigurasi Elektron: Pengertian Menentukan Jumlah Elektron Tidak Berpasangan Ion Positif Negatif Prinsip Aufbau Hund Pauli Contoh Rumus Perhitungan 10
- Larutan Elektrolit Non Elektrolit: Pengertian Contoh Jenis Reaksi Ionisasi Elektrolit Prinsip Mekanisme Alat Uji Daya Hantar Listrik Basa Kuat Asam Lemah
- Ester: Pengertian Sifat Fisik Kimia Tata Nama IUPAC Rumus Struktur Isomer Reaksi Pembuatan Kegunaan
- Faktor Mempengaruhi Laju Reaksi Kimia: Konsentrasi Suhu Katalis Luas Contoh Soal Pembahasan
Daftar Pustaka:
- Sunarya, Yayan, 2014, “Kimia Dasar 1, Berdasarkan Prinsip Prinsip Kimia Terkini”, Cetakan Ketiga, Yrama Widya, Bandung.
- Brady, James, E,1999, “Kimia Universitas Asas dan Struktur”, Edisi Kelima, Jilid Satu, Binarupa Aksara, Jakarta,
- Brady, James, E., 1999, “Kimia Universitas Asas dan Struktur”, Edisi Kelima, Jilid Dua, Binarupa Aksara, Jakarta.
- Sunarya, Yayan, 2013, “Kimia Dasar 2, Berdasarkan Prinsip Prinsip Kimia Terkini”, Cetakan Kedua, Yrama Widya, Bandung.
- Syukri, S., 1999, “Kimia Dasar 2”, Jillid 2, Penerbit ITB, Bandung
- Chang, Raymond, 2004, “Kimia Dasar, Konsep -konsep Inti”, Edisi Ketiga, Jilid Satu, Penerbit, Erlangga, Jakarta.
- Teori Laju Reaksi Kimia: Pengertian Rumus Menentukan Konstanta Persamaan Kecepatan Orde Satu Dua Contoh Soal Percobaan Perhitungan 10,